Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(26): 22818-22824, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811911

RESUMO

The interest in nanomaterials resides in the fact that they can be used to create smaller, faster, and more portable systems. Nanotechnology is already transforming health care. Nanoparticles are being used by scientists to target malignancies, improve drug delivery systems, and improve medical imaging. Integration of biomolecular logic gates with nanostructures has opened new paths in illness detection and therapy that need precise control of complicated components. Most studies have used fluorescence intensity techniques to implement the logic function. Its drawbacks, mainly when working with nanoparticles in intracellular media, include fluctuations in excitation power, fluorophore concentration dependence, and interference from cell autofluorescence. We suggest using fluorescence lifetime imaging microscopy (FLIM) in order to circumvent these constraints. Designing a nanohybrid composed of gold nanoparticles (AuNPs) and red-emitting carbon dots (CDs) can be used to develop a FLIM-based logic gate that can respond to multiple input parameters. Our findings indicate a nanohybrid that can serve as a nano-computer to receive and integrate chemical and biochemical stimuli and produce a definitive output measured by FLIM. This can open a new research avenue for enhanced diagnostics and therapy that require complicated factor handling and precise control. The AuNPs are conjugated to CDs' surfaces through a strong covalent linkage. The AuNP-CD nanohybrid shows fluorescence lifetime (FLT) quenching of pristine CDs after conjugation to AuNPs. The FLT was reduced from 3.61 ± 0.037 to 2.48 ± 0.040 ns. This quenched FLT can be recovered back by using trypsin as a recovering agent, giving us a reversible logic output. The FLT was recovered to 3.01 ± 0.01 ns after trypsin addition. This "on-off-on" response can be used to construct the IMPLICATION logic gate.

2.
Adv Mater ; 33(23): e2008779, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33955078

RESUMO

The intercalation of layered compounds opens up a vast space of new host-guest hybrids, providing new routes for tuning the properties of materials. Here, it is shown that uniform and continuous layers of copper can be intercalated within the van der Waals gap of bulk MoS2 resulting in a unique Cu-MoS2 hybrid. The new Cu-MoS2 hybrid, which remains semiconducting, possesses a unique plasmon resonance at an energy of ≈1eV, giving rise to enhanced optoelectronic activity. Compared with high-performance MoS2 photodetectors, copper-enhanced devices are superior in their spectral response, which extends into the infrared, and also in their total responsivity, which exceeds 104 A W-1 . The Cu-MoS2 hybrids hold promise for supplanting current night-vision technology with compact, advanced multicolor night vision.

3.
Materials (Basel) ; 14(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924057

RESUMO

In this work, we continued our systematic investigations on synthesis, structural studies, and electrochemical behavior of Ni-rich materials Li[NixCoyMnz]O2 (x + y + z = 1; x ≥ 0.8) for advanced lithium-ion batteries (LIBs). We focused, herein, on LiNi0.85Co0.10Mn0.05O2 (NCM85) and demonstrated that doping this material with high-charge cation Mo6+ (1 at. %, by a minor nickel substitution) results in substantially stable cycling performance, increased rate capability, lowering of the voltage hysteresis, and impedance in Li-cells with EC-EMC/LiPF6 solutions. Incorporation of Mo-dopant into the NCM85 structure was carried out by in-situ approach, upon the synthesis using ammonium molybdate as the precursor. From X-ray diffraction studies and based on our previous investigation of Mo-doped NCM523 and Ni-rich NCM811 materials, it was revealed that Mo6+ preferably substitutes Ni residing either in 3a or 3b sites. We correlated the improved behavior of the doped NCM85 electrode materials in Li-cells with a partial Mo segregation at the surface and at the grain boundaries, a tendency established previously in our lab for the other members of the Li[NixCoyMnz]O2 family.

4.
Nanomaterials (Basel) ; 11(1)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477327

RESUMO

Carbon dots (CDs)-based logic gates are smart nanoprobes that can respond to various analytes such as metal cations, anions, amino acids, pesticides, antioxidants, etc. Most of these logic gates are based on fluorescence techniques because they are inexpensive, give an instant response, and highly sensitive. Computations based on molecular logic can lead to advancement in modern science. This review focuses on different logic functions based on the sensing abilities of CDs and their synthesis. We also discuss the sensing mechanism of these logic gates and bring different types of possible logic operations. This review envisions that CDs-based logic gates have a promising future in computing nanodevices. In addition, we cover the advancement in CDs-based logic gates with the focus of understanding the fundamentals of how CDs have the potential for performing various logic functions depending upon their different categories.

5.
Nat Commun ; 11(1): 5697, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173061

RESUMO

Studies of nanoscale superconducting structures have revealed various physical phenomena and led to the development of a wide range of applications. Most of these studies concentrated on one- and two-dimensional structures due to the lack of approaches for creation of fully engineered three-dimensional (3D) nanostructures. Here, we present a 'bottom-up' method to create 3D superconducting nanostructures with prescribed multiscale organization using DNA-based self-assembly methods. We assemble 3D DNA superlattices from octahedral DNA frames with incorporated nanoparticles, through connecting frames at their vertices, which result in cubic superlattices with a 48 nm unit cell. The superconductive superlattice is formed by converting a DNA superlattice first into highly-structured 3D silica scaffold, to turn it from a soft and liquid-environment dependent macromolecular construction into a solid structure, following by its coating with superconducting niobium (Nb). Through low-temperature electrical characterization we demonstrate that this process creates 3D arrays of Josephson junctions. This approach may be utilized in development of a variety of applications such as 3D Superconducting Quantum interference Devices (SQUIDs) for measurement of the magnetic field vector, highly sensitive Superconducting Quantum Interference Filters (SQIFs), and parametric amplifiers for quantum information systems.


Assuntos
DNA/química , Nanoestruturas/química , Supercondutividade , Sistemas de Informação , Campos Magnéticos , Nanopartículas Metálicas/química , Nióbio , Teoria Quântica , Dióxido de Silício
6.
Sci Rep ; 10(1): 19141, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154464

RESUMO

Fiber optic sensors are widely used in environmental, biological and chemical sensing. Due to the demanding environmental conditions in which they can be used, there is a risk of damaging the sensor measurement head placed in the measuring field. Sensors using nanolayers deposited upon the fiber structure are particularly vulnerable to damage. A thin film placed on the surface of the fiber end-face can be prone to mechanical damage or deteriorate due to unwanted chemical reactions with the surrounding agent. In this paper, we investigated a sensor structure formed with a Zinc Oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) on the tip of a single-mode fiber. A nanocrystalline diamond sheet (NDS) attached over the ZnO is described. The diamond structure was synthesized in a Microwave Plasma Assisted Chemical Vapor Deposition System. The deposition processes of the nanomaterials, the procedure of attaching NDS to the fiber end-face covered with ZnO, and the results of optical measurements are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...